内蒙古锡林郭勒盟二连浩特市新款松下UPS蓄电池质量可靠,蓄电池

595元2021-12-07 05:53:31
  • 内蒙古诚耀电子技术有限公司
  • UPS蓄电池
  • UPS蓄电池信誉保证,UPS蓄电池总代直销,UPS蓄电池性能可靠,UPS蓄电池批发代理
  • 苏西坤
  • 15661011820(内蒙古呼和浩特)
  • 免费咨询

内蒙古诚耀电子技术有限公司

注册时间:2021-10-12

————认证资质————

  • 个人未认证
  • 企业已认证
  • 微信未认证
  • 手机已认证

线上沟通

与商家沟通核实商家资质

线下服务

核实商家身份所有交流确保留有证据

服务售后

有保障期的服务请与商家确定保障实效

详情

产品重量 5公斤以上 加工定制
品牌 Panasonic/松下 售后服务 全国联包
外观尺寸 60*60英寸 工作温度 4~45℃
工作电压 12v 工作电流 100A
电压 12 转化效率 70%
输出功率 70w 额定容量 180.0

内蒙古锡林郭勒盟二连浩特市新款松下UPS蓄电池质量可靠,蓄电池

当UPS电源蓄电池运用不当,特别是在过度充电时将会造成排气孔的不畅以及线路老化等问题,甚至还会存在安全隐患。


1、在UPS蓄电池充电时,需注意以防出现电流过大、过充电的现象。已安装的蓄电池需调整发电机的额定电压,而在充电间充电的蓄电池,就需把控好充电电流与充电时间。

2、在运用时,需防止出现火花,导线的接头与电桩的连接需牢固。在维修时,需确保极板组的焊接质量。

3、力博特云监控“智慧电池”是为监控模块内置型的新型铅酸电池,数据可现场查看或上传至云平台,电脑PC端与手机APP端均可通过云平台获取数据信息,同时还可提供电池异常告警。

4、在低温条件下运用时,不可连续运用起动机。起动机的结合时间不可超过5~10S,同时还需维持10S~15S一次的间隔时间进行起动。

5、在运作时,为使产生的气体及时由加液口的通气孔排出,让内部气压不会过高,加液盖就需维持在被拧紧的状态,同时还需疏通通气孔。

在充电过程时,维持各接线点的稳固与牢靠,若是接线点出现松动,将会出现火花,就会使UPS蓄电池鼓胀形成隐患。


一、概述
  目前,蓄电池监测模块大多都是电压巡检仪,在线监测电池的浮充电压,在超出设定值时给出报警。相对以前的整组电压监测方式来说,单体电压监测是前进了一大步,但对于电池的长期运行过程中的容量衰减以至失效的监测,电压能反映的问题非常有限:100Ah的电池和衰减至10Ah的电池在浮充电压上的差异很难区别开来。因此,需要从蓄电池的失效模式进行探讨,从而解决蓄电池的监测问题。
  二、阀控铅酸蓄电池的失效模式
  对于阀控式铅酸电池,通常的性能变坏机制有以下几种情况:
  1、热量的积累
  开口式铅酸电池在充电时,除了活性物质再生外,还有硫酸电解质中的水逐步电解生成氢气和氧气。当气体从电池盖出气孔通向大气时,每18克水分解产生11.7千卡的热。
  而对于阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的唯一途径。
  因此,阀控铅酸电池的热失控问题成为一个经常遇到的问题。
  阀控铅酸电池依赖于电壳壁的热传导来散热,电池安装时良好的通风和较低的室温是很重要的条件。为了进一步降低热失控的危险性,浮充电压通常具体视不同的生产者和不同室温而定。厂家一般都给出电池的浮充电压和温度补偿系数。
  2、硫酸化
  阀控式比开口式电池更易产生的问题是负极板的硫酸化。这是由于:
  1)氧的循环引起的负极板较低的电位;
  2)在强酸电解质汇集的电池底部形成的酸的分层,在这种不流动,非循环的电解质系统中是很难避免的。
  这两个都可能在浮充条件下产生一定数量的残留硫酸盐,然后转变成永久性的硫酸盐形式。因此,当极板加速去活化时,可用的放电安时容量就会减小。随着负极板温度的升高,这种状况会更加恶化。由于氧循环反应的发生,负极板表面被氧化,相当数量的热释放出来。
  3、正极板群的腐蚀和脱落
  阀控式铅酸电池中,这种形式的性能变坏本来就更加严重。由于氧循环反应,负极活性物质被持续氧化生成硫酸铅,有效地维持了放电状态,因此降低了负极板的电位。而对于给定的浮充电压正极板群的电位则相应较高。因而氧化气氛加剧了,引起了更多的氧气的析出,使活性物质的腐蚀与脱落加剧。
  4、电池的干涸
  在使用期间气体再复合机制的有效率不是100%,水被电解生成氢气和氧气的速度虽然低于相同大小的富液式电池的电解速率的2%,但水还是会逐渐失去。
  当失水是主要的失效原因时,电解质的比重将会增加,当比重由最初的1.30增至1.36时,表示失水度约达到25%。在失水度达到25%时,酸的高浓度加速了硫酸化,电解质比重又开始下降。电池电压直接正比于电解质比重,因此电池电压并不是电池健康状况的可靠显示。
  5、负极上部铅的腐蚀
  正极板栅和极群的腐蚀性在铅酸电池的各个设计中都是本来就有的。与之形成明显对比的是负极板位于高度还原气氛,在开口式电池中位于极群汇流排通常浸在电解液液面以下,这样就避免了由于正极板群上冒出的氧气而产生的侵蚀。但是阀控电池的许多设计没有保护极板板耳、极群和汇流排,特别是两者之间的焊接接头。因此,它们暴露在从氧循环中逃溢出来、在电池板群上部的连续的氧气气流中。依赖于板栅(板耳)和极群所选铅合金的一致性和生产质量(需要板栅部分完全溶化焊接和汇流排的低孔隙率),迅速氧化可能就会发生。
  三、蓄电池监测系统的研制
  为了给蓄电池提供良好的运行环境,在线监测电池的工作状况,电池管理系统(BMS-BatteryManagementSystem)应运而生,成为高可靠电源系统的关键一部分。
  1、电池单体的内阻测量
  内阻R反比于传输电流的横截面积A。活性物质的脱落、极板板栅和汇流排的硫酸化和腐蚀、干涸都可降低有效的横截面积A,所以可通过测量内阻来检测电池的失效。
  内阻和电池状态的相关程度可变性很大。从报导的相关性来看,变化范围从0%到100%。英国电子协会(ERA)对用阻抗监测的实验室设计和商用设计两种产品进行了大量的电池调查,发现二者的准确性在50%以上。一个基本的困难是测量小变化数值的精度问题。正常的300安时备用电流的电阻仅在0.25×10-3欧姆的数量级。因此,很小而且有意义的电阻变化可能观察不到。在下面的操作环境下,问题更加严重。
  1)在线测量期间存在的变压器的“噪音”和浮充电压波动引起的干扰。
  2)腐蚀裂纹对内阻的影响是有高度方向性的,内阻数值对平行于电流方向的裂隙是相对不敏感的。
  3)电解质浓度的变化,继而电池的变化使得结果很难解释。
  虽然内阻测量法很难准确测量电池的容量,内阻/容量的对应关系很难复现,但对于BMS来说,内阻测试只是用于电池单体之间的比较,而且计算机可以对内阻的变化进行记录和数据处理来预告电池容量衰减和失效,因此,内阻测试对于BMS而言是关键技术之一。
  对于离线或电池开路情况下测量内阻而言,测量时可方便地将激励电流回路与电压测量回路以4端子方式与电池组中的单体相连接,但对于在线测量,很难解决激励和测量的问题。
  目前大多采用在电池组两端并联放电器,因为有充电器和电池组并联,需要将充电器停止工作,而且要实时同步测量电池的电流变化和电压变化,很难处理采样干扰。
  采用中点抽头的激励装置,与目前采用的在电池组正负极两端施加激励的内阻测试装置相比,由于连接了中点抽头,激励装置的电流通过中点抽头后经上部电池组和下部电池组到达电池组的正极和负极,消除了电池组外部充电器和用电负载的并联影响,在电池上产生了稳定的电流激励,能够准确测试电池的内阻。
  2、系统结构
  一般系统中阀控铅酸蓄电池(VRLAB)的配置一般是:
  500kV变电直流系统:2组全容量电池,3台充电机。
  220kV变电直流系统:1组全容量电池,2台充电机。
  110kV变电直流系统:1组全容量电池,2台充电机。
  以108只2V、18或19只12V电池为主。电池的安装摆放形式也差别很大,电池与操作间的距离不确定。
  BMS由控制单元、测量模块、相关软件和辅助部件构成,一个控制单元可接入多个测量模块,完成对不同只数和不同电压的多组蓄电池的监测管理。控制单元用于数据传输、数据处理及人机界面控制,具有RS-232连机接口和RS-485远程(集中)管理接口、测量模块控制接口、操作键盘、显示面板、声光报警及报警输出控制接点。控制单元实时显示电池数据,智能分析数据,对异常的电池运行情况进行及时报警。
  测量模块用于蓄电池数据的巡检,内置CPU独立高速工作,除进行常规电压、电流、温度等测量外,与内阻测试模块连接后可准确在线测试电池内阻。测量模块安装在电池附近,与控制模块之间通讯连接,方便现场接线安装。
  3、系统的参数设置
  BMS系统作为一个完整的监测系统,首先应该通用于直流220V系统、直流110V系统、直流48V系统,以及直流24V系统,设计时便考虑了其通用性,主监控模块和内阻检测模块是通用的,对于不同的系统,只需要增添数量不同的采集模块,同时,设定每一个采集模块的电池采样数量。因此,系统需要设定如下系统参数和报警参数:
  1)采集模块数量
  2)采集电池数量最少的采集模块的电池采集个数
  3)后台通讯地址设置
  4)后台通讯波特率设置
  5)电池组浮充电压上下限
  6)单电池浮充电压上下限
  7)内阻阈值
  8)容量报警
  9)过流报警
  10)温度异常
  其中前四项为系统设定,后六项为报警设定。
  4、电压、电流巡检与数据分析
  最初的电池监测装置只是检测电池组的端电压、电流和温度,并将检测数据与设定的上下限比较,给出报警提示。电池巡检仪可以对每一个电池单体进行电压测量,并对浮充电压超限报警。
  大多数电池厂家的技术人员将电压测量放在首位,对于处在浮充状态的电池,其浮充电压的细微差别可体现电池的荷电状态,能判断电池的严重失效,因浮充电流很小,电池之间的性能差异(以容量差异为主)很难表现出来。BMS对电池的完整工作过程进行监测,实时测量在充电、浮充、放电的不同状态下的电压、电流,并采用不同的数据处理方法,以提高数据分析的准确性。
  浮充电压与温度的关系可按生产厂家提供的斜率进行补偿。
  VF=V0+k(T-T0)
  一般情况下k="3"~5mV。
  5、剩余容量计算
  试图通过某种方法在线测得电池的实际保有容量一直是电池用户最迫切的希望,但到目前为止,还没有这样的方法或算法。有些介绍用电池内阻来计算保有容量的资料或产品广告,但实际使用起来数据的对应关系并不严格,内阻只能用于区别电池容量的大幅度变化。尤其是利用电池内阻的相对变化可以准确预报电池落后。
  当电池处于放电工作时,对于很多场合都需要知道电池的剩余容量及供电时间,根据电池的额定容量和放电电流的监测,不难实时计算出剩余容量,假定负载相对稳定,则换算出供电时间。一般情况下,电池制造厂都给出在不同放电信倍率下的电池容量。
  用最小二乘法根据电池厂家提供的在不同倍率下的放电容量,可以简化地用二次曲线来表示电流和容量之间的关系,分别求得a、b、c:
  6、电池运行事件记录
  BMS的另一方面重要作用记录运行数据,以便在电池出现故障时进行追踪,确定是由于电池质量的原因还是不正常的使用所造成的。对于长时间的连续运行,要记录所有的数据不仅对硬件要求高,也没有实际意义。BMS设计有事件产生器,依据事件产生规则将电池正常运行情况以事件形式存储,大幅减小数据量,而且方便查询管理。主要包括:
  1)浮充电压过高、过低
  2)充电电流过大
  3)放电电流过大
  4)工作温度过高、过低
  5)内阻变化
  6)深度放电
  事件记录当时的数据和持续时间。对于电力系统的电池运行特点,要求事件产生规则有较强的鲁棒性,可以屏蔽合闸冲击和测量干扰。
  如果电池组中存在个别落后电池,则放电容量由最差的电池决定。
  7、远程管理
  随着无人值守变电站的推广,电池的在线监测更加必要。电池监测设备可以和集中监控系统联机,通过远程管理软件可以查看电池的当前运行状况和所记录的历史运行事件,及时得知监测过程发出的报警信息,决定是否派人维护,也可以通过远程遥控进行更深一步的测试。
  8、实测数据分析
  通过对六只不同容量不同电压等级的电池进行测试比较,其中标准内阻采用日本进口单电池内阻测试仪,标准电压采用0.1级标准数字万用表测试。在线测量由BMS电池巡检仪测的,具体数据如下(内阻单位为毫欧,电压单位为伏):
  通过测试分析,BMS电池巡检仪测试准确,精度高,完全能胜任蓄电池系统的在线监测。

铅酸蓄电池已发明有一百多年了,一百多年铅酸蓄电池有着极大的发展与应用。目前市场上应用的铅酸蓄电池有:普通、密封、免维护式等,由于铅酸蓄电池经济实用等优点,至今仍在大量广泛应用,占市场量的70%以上,各行各业都在应用。但由于铅酸蓄电池的特性、结构、材料、生产环境、工艺及使用保养维护等因素,据有关资料统计,铅酸蓄电池过早失效而报废的现象,75%以上都是由于铅酸蓄电池极板上形成不可逆硫酸铅盐铅化、自放电、活性物质失效及脱落的原因,而这三大难题一直是困挠铅酸蓄电池行业难于攻克的顽症,至今还没有解决这三大难题的绝对好办法。如普通铅酸蓄电池设计寿命为2-3年,而往往实际使用只一年我时间或更短时间,免维护铅酸蓄电池设计寿命为7-15年,有的制造出来由于贮存时间过长,未经使用就已失效报废,远远短于预期使用寿命,导致能源的浪费及应用的经济效益。
  一、铅酸蓄电池的基本结构及特性
  铅酸蓄电池主要壳体、正负极板、隔板,电解液在电场作用下将电能转变为化学电能贮存,又将化学电能转为直流电能,并可反复进行数次充放电循环的一种装置,电化学反应式为:
  上式可知铅酸蓄电池是一个复杂的电化学反应体系,铅酸蓄电池性能寿命长短取决于制造正负极板的材料,工艺环境、活性物质纯度组合构成及使用环境和维护等有很重要的影响。
  二、铅酸蓄电池正负极板(电极)中活性物质与容量重要关系
  1、由于铅酸蓄电池容量的多少与正负极板中能参加电化学反应的活性物质的数量面积有重要关系,这里所讲活性物质量指的是能参加可逆性电化学反应的真实表面积,而不是几何尺寸的计算面积。当铅酸蓄电池加入电解液后,正负极板都在电解液(硫酸)的浸泡之中,一部分电解液中的硫酸被正负极板吸收,正负极板表面全是硫酸铅。
  而正负极板在电场的作用下,正极板的表面形成致密的二氧化铅,而负极板的表面形成致密的纯铅,其正极板形成的二氧化铅越致密铅酸蓄电池容量就越大。因此,在常规的充放电过程中,正负极板在充电时得到二氧化铅和纯铅,放电后正负极板形成硫酸铅,其活性物质应是迸性的,可相互换置的离子结构的活性物质才对电化学反应有效。
  按规定规格标准生产制造的任何一种额定容量的铅酸蓄电池,在常充电下其铅酸蓄电池的容量应在额定容量的95%以下,说明其铅酸蓄电池不合标准,其原因有制造材料、生产工艺、环境、产品贮存时间过长其活性物质老化失效等原因。
  三、极板酸化,自放电、活性物质脱落与铅酸蓄电池失效
  1、极板硫化:所谓硫化是指正负极板上形成不可逆硫酸铅盐化组成一层白色粗粒结晶的硫酸铅而言。这种结晶体很难在正常的充电时消除,硫化的形成程度与铅酸蓄电池容量有很大的关系,硫化越严重,电容量越少,直至报废,极板硫化的因素很多,主要是铅酸蓄电池贮存时间过长,因为极板在化成处理时活性物质表面存在硫酸,导致活性物质表面的硫酸铅老化后失去电离的作用。铅酸蓄电池带电搁置时处于放电状态,放电后未及时给电池充电,电解液密度过高或不纯,都会使正负极板中活性物质的表面形成不可硫化。所以,硫化是导致极板活性物质失效报废的主要原因。
  2、自放电,是指铅酸蓄电池内电自行消耗,一般认为每昼夜容量下降不大于2%,就认为正常,因铅酸蓄电池本身有自放电缺点,如果每昼夜容量下降大于2%时,那就是有故障了,自放电原因主要有:生产制造中材料不纯(如含锑过高或其它有害杂质),电解液中含有害杂质(铁、锰、砷、铜等离子),正负极板硫化后极隔板孔隙堵塞,导致铅酸蓄电池内阻消耗增大,都有导致铅酸蓄电池产生自放电的原因,所以,要求电解液必须是专用硫酸,水必须是蒸馏水或去离子水。
  3、极板活性物质脱落
  规范的使用铅酸蓄电池,正负极板中的活性物质是不易脱落的。正极板活性物质的脱落主要是电不足或低温时大电流放电,而负极板活性物质的脱落主要是过充电或充电电流过大,过充电会引起水的电解产生大量的氢气和氧气,当氢气向孔隙冲出时,会使活性物质脱落,铅酸蓄电池在颠震的环境使用也会加速活性物质的脱落。所以,要求铅酸蓄电池在使用中一定要避免过充过放电发生。
  4、电池的失效报废
  是指新铅酸蓄电池未使用就失效报废了,原因在于:铅酸蓄电池制造材料中的活性物质组合不合理;极板在化学处理时未达到充放标准;极板贮存环境不良或存放时间过长,密封受损,长期处于空气的氧化之中,致使极板活性物质被老化;在使用过程中维护不当,某一单体长时间处于去电状态,大电流放电时去电单体出现反极电压后,仍未及时给蓄电池维护:如调整电解液密度,加蒸馏水,给蓄电池补充电,导致该单体不可逆硫化而失效。在铅酸蓄电池的使用过程中,往往是夏季未及时给蓄电池加水,气温高蒸发快导致电解液不足或干枯,使极板露出电解面后受空气而氧化氢脆导致极板硫化而坏死。所以,铅酸蓄电池的损失是夏季时期,动力是在夏季时气温高易起动,对铅酸蓄电池容量要求高,可是铅酸蓄电池在夏季时极板活性物质局部面积形成硫化,冬季时要求铅酸蓄电池大电流供电已不可能。如果起动或牵引用铅酸蓄电池经充电额容量的70%时,只有报废,更换新的蓄电池了。

展开更多
排行8提醒您:
1)为了您的资金安全,请选择见面交易,任何要求预付定金、汇款等方式均存在风险,谨防上当受骗!
2)确认收货前请仔细核验产品质量,避免出现以次充好的情况。
3)该信息由排行8用户自行发布,其真实性及合法性由发布人负责,排行8仅引用以供用户参考,详情请阅读排行8免责条款。查看详情>
免费留言
  • !请输入留言内容

  • 看不清?点击更换

    !请输入您的手机号

    !请输入验证码

    !请输入手机动态码

内蒙古诚耀电子技术有限公司
×
发送即代表同意《隐私协议》允许更多优质供应商为您服务