皱纹粉末涂料专用死角上粉剂有效提高粉末的带电性

皱纹粉末涂料专用死角上粉剂有效提高粉末的带电性
皱纹粉末涂料专用死角上粉剂有效提高粉末的带电性
钙化合物。主要是天然与人造碳酸钙,化学成分是CaCO3。天然品为重质碳酸钙,又称大白粉、石粉、白垩等,均系石灰石粉末。其制品质地粗糙,密度大易沉淀。人工合成产品称为沉淀碳酸钙,也称轻质碳酸钙。其质地纯、粒度小、体质轻。碳酸钙吸油量高,特是化学合成的氢质碳酸钙粒形不规则、孔隙率高,不利于在粉末涂料基料中进行分散,因此对于特殊无法采用沉淀硫酸钡的高光粉末涂料产品建议采用活性碳酸钙,普通高光或低光产品采用与天然硫酸钡搭配方式使用。普通天然超细高光钙可用于标准光泽粉末涂料产品,普通消光钙(粒度较粗)和轻钙可用于低光泽产品或砂纹、锤纹产品。碳酸钙存在微量碱性不宜与不耐碱颜料铬黄、铁蓝等合用。在对于羟基聚酯/氨基树脂皱纹(四甲氧甲基甘脲,商品名为PowderLink 1174)产品体系中,由于配方中采用了胺封闭磺酸催化剂(如AC32-18A、本网推荐的WL系列胺封闭磺酸催剂等),碳酸钙的碱性会大大降低磺酸催化剂的活性甚至失效,故无法得到皱纹效果。但是在环氧类粉末涂料消光产品(化学消光)中,碳酸钙的碱性却有助于产品降低。

氧化铝具有硬高的特性,粉末涂料配方采用部分氧化铝有助于增强涂膜硬度。另外,气相纳米氧化铝是综合性能最优异的气雾分散剂,有助于改善粉末涂料流动性。氢氧化铝属于功能性材料,通常用作阻燃剂,具有阻燃、无毒消烟作用。特别是氢氧化铝微偏碱性,用于纯环氧化学消光体系有助于光泽降低。若氢氧化铝与超细天然碳酸钙搭配用于纯环氧化学消光体系,那么得到的粉末涂料产品光泽在 2%以下,属于极无光产品,且光泽几乎不受烘烤条件影响,在"冷炉"中几乎不会升高。

从粒径上划分
体质颜料通常是无机粉体材料,粉体材料的颗粒大小分布可以很广,可以从纳米到毫米,因此在描述材料粒度大小时,可以把颗粒按大小分为纳米颗粒、微米颗粒(超微颗粒、微粒、细粒)、粗粒、粗状物等等种类(图3)。纳米材料的颗粒颗粒大小一般在0.1nm~100nm尺寸范围,微米颗粒大小一般在0.1μm~100μm的尺寸范围内,100μm~1mm 为粗粒材料,大于1mm即为粒状物材料。体质颜料也可以根据粉碎加工技术的深度和粉体物料物理化学性质及应用性能的变化,一般将细粉体和微细粉体划分为10~100μm(细粉)、0.1~10μm(超细粉)和0.001~0.1μm(超微细粉)三种。粉末涂料按如上划分属于微米级颗粒产品,通常平均粒径分布在10~90μm范围之内,小于10μm称为超细粉,在于90μm称为粗粉。

用于粉末涂料的体质颜料,其粉体粒粒通常在0.1~20μm之间,在
粉末涂料中主要起着填充补强作用,所以通常被称为填充料。然而随体质颜料平均粒度的不同,其物理性能也会随之改变,如对光的折射散射力、吸油量等。通常,粉粒径越小,折光指数越低。如着色颜料级金红石型钛白粉折光指数(折射率)为2.76,聚合物的折射率约1.48,体质颜料的折射率为1.4~1.7,相比而言着色级白色颜料二氧化钛的白折射率与聚合物基料相差较大,因此在粉末涂料产品中作为白色颜料使用。一旦将其粒径做到纳米级,其折光率与聚和物的非常接近,这意味着纳米二氧化钛已丧失了做白色颜料的着色功能。常规粉末涂料通常粒径分布在10~90μm范围之内,最佳平均粒径介于30~45μm之间,小于10μm称为超细粉,大于90μm称为粗粉,普通粉末涂层设计厚度在60~80μm。最新发展起来的薄涂层粉末涂料,通常粉末粒径分布于10~30μm范围之内,其平均粒径在15~25μm之间,涂层厚度设计在20~30μm。在粉末涂料中,从与高聚物分子的作用来说,体质颜料粒径越小越好,因为体质颜料粒径越小,则其增强作用越大。但粒径过小,在目前加工技术条件下,体质颜料的加工和分散较困难,因此,一般体质颜料的粒径控制在0.1~20μm内为好。当小于0.1μm之后,体质颜料将随粒径变小,表现出较强的补强作用,明显改善更提升粉末涂料某些性能。如硬度、耐磨性、柔韧性、耐候性、耐化学性、耐沾污性、抗菌性等等。这时的体质颜料已是纳米级材料,粒径是影响体质颜料在粉末涂料中应用性能的一个重要因素。粒径介于0.1~100nm的粉体材料,即小于0.1μm的体质颜料已归属于纳米材料。纳米材料(Nano Material)是指在三维空间中至少有一维处于纳米尺度范围(0.1-100nm)或由他们作为基本单元构成的具有小尺寸效应的零维、一维、二维、三维材料的总称。纳米材料是指由纳米颗粒(nanoparticle)组成,纳米颗粒材料又称为超微颗粒材料。特征维度尺寸在纳米量级(1~100nm)的固态材料,具有尺寸小、比表面积大、表面能高、表面原子比例大等四大特点。纳米材料是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料,即处在原子簇和宏观物体交界的过渡区域。从通常的关于微观和宏观的观点看,该系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,具有独特的结构特征,即具有一系列新的特点。
纳米材料和宏观材料迥然不同,具有传统材料所不具备的奇异或反常的物理、化学特性。纳米材料会表现出特异的光学、电学、磁学、热学、力学、机械、化学等性能,往往不同于该物质在整体(大块固体)状态时所表现的性质。纳米材料如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限开始导电。纳米材料由于极细的晶粒,大量处于晶界和晶粒内缺陷的中心原子以及其本身具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等四大特殊效应,纳米材料与同组成的微米晶体(体相)材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能。因而成为材料科学和凝聚态物理领域中的研究热点。将纳米材料用于涂料中,这些特殊功能改变了涂料的固有特性,使其某些性能有极大提高。目前,已开发出了许多应用粉末涂料的纳米材料,如纳米硫酸钡、纳米碳酸钙、纳米二氧化钛、纳米氧化锌、纳米氧化铝、气相纳米氧化铝、气相钠米二氧化硅(又称白炭黑)等。纳米材料与微米级材料表现出明显的补强作用,不再简单地做填充料降成本使用。像纳米二氧化钛、纳米氧化锌等均具有杀菌消毒与吸收紫外线功能。气相氧化铝和气相二氧化硅是用于粉末涂料后混的性能优异的气雾分散剂,用量仅为0.1%~0.3%即大大增强粉末涂料颗粒的流化性分散性能。
体质颜料晶体结构。体质颜料具有晶质与非晶质两类,晶体结构也将影响体质颜料的性能。在众多体质颜料中,具有层状结构的粘土矿物只有高岭土、滑石、膨润土、云母四大类。其结构由两种基本结构层构成:硅氧四面体层和铝氧八面体层或铁氧八面体层(见图4和图粘土矿物的结构单位层有两种类型:蒙脱石(膨润土)型:属三层型的结构单位层(2:1型),由两层四面体夹一层八面体组成,伊利石和绿泥石也属三层型。高岭石型:属双层型的结构单位层(1:1型),由
一个八面体层连接一个四面体层组成。层状结构体质颜料不具备非层状体质颜料具有的高硬度性能,但具润滑性、阻隔作用,用于涂料产品中使涂层具有非常好的爽滑感,可以阻挡

皱纹粉末涂料专用死角上粉剂有效提高粉末的带电性

皱纹粉末涂料专用死角上粉剂有效提高粉末的带电性

排行8提醒您:
1)为了您的资金安全,请选择见面交易,任何要求预付定金、汇款等方式均存在风险,谨防上当受骗!
2)确认收货前请仔细核验产品质量,避免出现以次充好的情况。
3)该信息由排行8用户自行发布,其真实性及合法性由发布人负责,排行8仅引用以供用户参考,详情请阅读排行8免责条款。查看详情>
关键词:薄涂工件专用,家具粉末涂料专用,高光粉末涂料专用,户外粉末涂料专用
广州惠用高分子材料科技有限公司
×
发送即代表同意《隐私协议》允许更多优质供应商为您服务